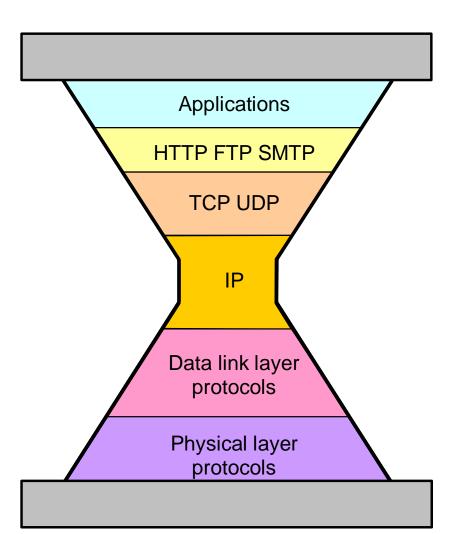

IP – The Internet Protocol

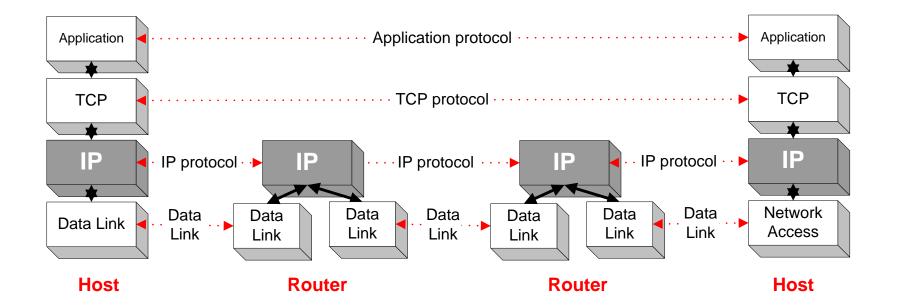
Orientation

IP (Internet Protocol) is a Network Layer Protoco



Media

IP's current version is Version 4 (IPv4). It is specified in RFC 891.


IP: The waist of the hourglass

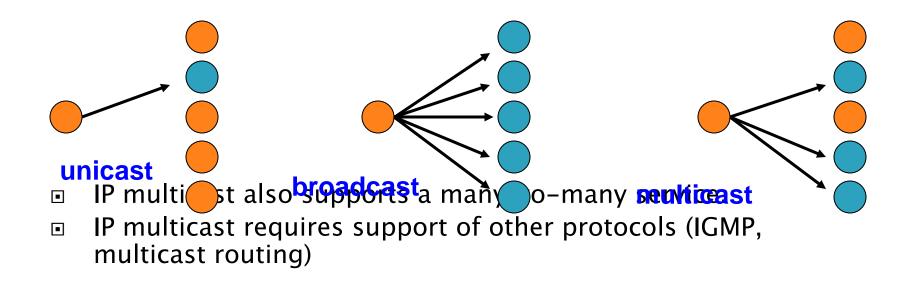
- IP is the waist of the hourglass of the Internet protocol architecture
- Multiple higher-layer protocols
- Multiple lower-layer protocols
- Only one protocol at the network layer.

Application protocol

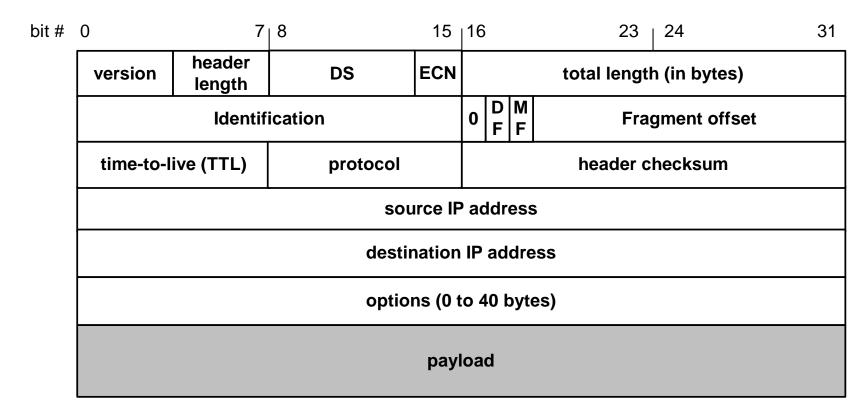
IP is the highest layer protocol which is implemented at both routers and hosts

IP Service

- Delivery service of IP is minimal
- IP provide provides an unreliable connectionless best effort service (also called: "datagram service").
 - Unreliable: IP does not make an attempt to recover lost packets
 - Connectionless: Each packet ("datagram") is handled independently. IP is not aware that packets between hosts may be sent in a logical sequence
 - **Best effort:** IP does not make guarantees on the service (no throughput guarantee, no delay guarantee,...)
- Consequences:
 - Higher layer protocols have to deal with losses or with duplicate packets


Packets may be delivered out-of-sequence

IP Service


IP supports the following services:

- one-to-one
- one-to-all
- one-to-several

(unicast) (broadcast) (multicast)

IP Datagram Format

-4 bytes-

20 bytes \leq Header Size $< 2^4 \times 4$ bytes = 60 bytes 20 bytes \leq Total Length $< 2^{16}$ bytes = 65536 bytes

IP Datagram Format

- Question: In which order are the bytes of an IP datagram transmitted?
- Answer:
 - Transmission is row by row
 - For each row:
 - 1. First transmit bits 0-7
 - 2. Then transmit bits 8-15
 - 3. Then transmit bits 16-23
 - 4. Then transmit bits 24-31
- This is called network byte order or big endian byte ordering.
- Note: Many computers (incl. Intel processors) store 32-bit words in little endian format. Others (incl. Motorola processors) use big endian.

Big endian vs. small endian

• Conventions to store a multibyte work

• Example: a 4 byte Long Integer Byte3 Byte2 Byte1 Byte0

Little Endian

- Stores the low-order byte at the lowest address and the highest order byte in the highest address.
 - Base Address+0 Byte0
 - Base Address+1 Byte1
 - Base Address+2 Byte2
 - Base Address+3 Byte3

Intel processors use this order

Big Endian

- Stores the high-order byte at the lowest address, and the low-order byte at the highest address.
 - Base Address+0 Byte3
 - Base Address+1 Byte2
 - Base Address+2 Byte1
 - Base Address+3 Byte0

Motorola processors use big endian.

Fields of the IP Header

- Version (4 bits): current version is 4, next version will be 6.
- Header length (4 bits): length of IP header, in multiples of 4 bytes
- DS/ECN field (1 byte)
 - This field was previously called as Type-of-Service (TOS) field. The role of this field has been re-defined, but is "backwards compatible" to TOS interpretation
 - Differentiated Service (DS) (6 bits):
 - Used to specify service level (currently not supported in the Internet)
 - Explicit Congestion Notification (ECN) (2 bits):
 - New feedback mechanism used by TCP

Fields of the IP Header

 Identification (16 bits): Unique identification of a datagram from a host. Incremented whenever a datagram is transmitted

Flags (3 bits):

- First bit always set to 0
- DF bit (Do not fragment)
- MF bit (More fragments)
- Will be explained later \rightarrow Fragmentation